NG-Ultra validation and on-board processing board development Space Electronics

Olivier Notebaert Platform Products Portfolio Manager Space Electronics Gilles Latouche, Benoit Leroy, Simon Russeil

AIRBUS

June 2021

AGENDA

Context NG-Ultra development OLYMPE processing board Use cases Conclusion

Context

- New generation spacecraft's, by the middle of the decennie will require a new level of computing processing capabilities
- Still, the mission critical elements will be made of rad-hard components which only can offer the necessary availability in the space environment

- Airbus and its partners are engaged in the development of the new very high performance System On Chip (SoC) NG-Ultra
- Beyond the chip itself, Airbus is active in developing the hardware, the software and the surrounding technologies to enable the capabilities of the NG-Ultra on competitive new generation of satellites
- With the support of ESA and the CNES, Airbus is developping a NG-Ultra flight demonstrator board

AIRBUS

Context NG-Ultra development OLYMPE processing board Use cases Conclusion

Features

ARM-based quad-core CPU							
Debug & Trace							
Cortex-R52	Cortex-R52	Cortex-R52	Cortex-R52				

- Quad-Core ARM R52 @ 600 MHz \rightarrow > 7000 DMIPS
- Full compatibility with ARM Debug & Trace ecosystem

DEFENCE AND SPACE

Features	On chip	ARM-based quad-core CPU				External
	Memory	Debug & Trace				Memory
	eRAM eROM	Cortex-R52	Cortex-R52	Cortex-R52	Cortex-R52	DDR FLASH

16 channels DMA

- Boot eROM + 2 MBytes eRAM
- Memory interface (volatile) \rightarrow DDR2/DDR3/DDR4
- Memory interface (non volatile) \rightarrow Boot Flash
- 16 x channels DMA to help managing memory transfers

DEFENCE AND SPACE

AIRBUS

AIRBUS

DAHLIA

10

NG-Ultra: Multiple projects to support the development

¹ This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 730011 ² This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004203

NG-Ultra Development

- Design phase is completed, performances meeting requirement specification
- Industrialisation on-going, flight sample manufacturing in 2021, component flight qualification in 2022
- First <u>Radiation Hardened</u> <u>European</u> <u>System on Chip with eFPGA</u> to be released on the market shortly thanks to

NanoXplore, all consortium members and to the support of the agencies

NG-Ultra validation

(*) Proven functionalities are functionalities that the consortium has been able to activate on the NG-Ultra v1 (the real chip on the demo board) (**) Remaining features are functionalities not tested on the NG-Ultra v1 demo board

- DDR4 interface not tested on board since the demo board implement DDR2, but DDR has been intensively verified by simulations
- Security features (such as bitstream encryption) not tested, all tests performed in "clear" mode
- HSSL test will be fully validated by July 2021

NG-Ultra Validation

Very regular reviews between NanoXplore, TAS and ADS with support from agencies

Exchanges on technical topics, use cases, potential issues...

- allow to share info within the consortium
- allow to improve completeness of a future user manual to benefit the European space community
- allow to take decision if needed on design update or workaround
- Review of FPGA place and route tool performances

Context

NG-Ultra development

OLYMPE processing board

Use cases

Conclusion

NG-Ultra processing board

- Board designed to fit ADHA standard with cPCI-ss interface
- and 12 V power interface.
- PCB designed to cope with HSSL links up to 6 Gbits/s and DDR memory
- Designed with space rad-hard EEE
- Development of OBC FPGA IPs with space constraints
- Development of SW BSP with space quality level
- Development of back panel board to interface test bench
- Validation of NG-Ultra key performances with specific applicative SW and associated test bench

OLYMPE processing board GSTP goals

Validate the critical features of the NG ultra SOC

- High speed links
- Exchanges with memories
- Internal exchanges between the ARM cores and the eFPGA matrix
- Enabling the high multi-core performances
- Assess the development framework on a real use case
- **Targets ADHA**, and provides inputs to the ADHA standard definiton working group

The OLYMPE processing board is the 1st iteration of the next generation OBCs

- Global architecture of OBC is analyzed to get the final split of features per board
- Form factor and interfaces are the final ones of an OBC product
- FPGA and SW features are following flight standard

OLYMPE board schedule

Architecture, design, layout

PDR

- Olympe PCB and board maufacturing
- Integration tests
- Demonstration of key features

Completed

Completed

Q2 2021

Q3-Q4 2021

AIRBUS

Q1 2022

Context NG-Ultra development OLYMPE processing board Use cases Conclusion

DEFENCE AND SPACE

A processing element for the critical misson applications

HW performance

AIRBUS

DEFENCE AND SPACE

One step toward ADHA

Rack & backplane standard Baseline :

- ADHA cPCI Serial Space
- 6U form factor primarily
- Up to 9 slots
- HSSL

Processing Modules

PM-Ultra
NG-Ultra SOC

Evolutions

- COTS HP processing
- Al Accelerator

Third party modules

- Airbus partners modules
- ADHA compliant modules

Functions module for unified avionics • I/O controls GNSS Mass Memory Thermal control ADC/DAC

Power module

Custom modules, specific per application

Conclusion

ultra

End to end competences in Airbus

June 2021

NG

cnes eesa

Thanks to the agencies for their support

June 2021 OI

OBDP 2021